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The temporal evolution of the flow patterns about a shallow bottom topography in 
a deep, rapidly rotating, stratified flow is studied on the basis of an inviscid 
Boussinesq model. The initial boundary-value problem, linearized for a thin three- 
dimensional obstacle, is solved for an impulsively started flow. The indicia1 response 
obtained reveals a window for the horizontal wavenumber spectra of the obstacle 
geometry. Only the portion of spectra within this window, which is shut a t  the start 
and widens linearly with increasing time, contributes to the solution. Thus, only the 
relatively large-scale. cyclonic feature associated with the wavenumber origin can 
dominate the flow in the early period, while the more familiar inertial wave system 
emerges much later. 

Examples of solutions computed via an FFT algorithm confirm that, except in the 
two opposite limits for the zero and infinite stratification, the cyclonic disturbance 
and inertial waves coexist, but a solitary pressure hill associated with the cyclonic 
disturbance remains dominant throughout most evolution stages. For a sufficiently 
strong stratification, the solution to the linear pressure equation suggests the 
emergence of a secondary eddy in the lee; its significance and validity are 
discussed. 

1. Introduction 
The study of a rotating stratified flow about an obstacle is essential to an 

understanding of the dynamics of oceans and atmosphere. Disturbances generated 
by topographical fcatures, in the presence of combined Coriolis and stratification 
effects, can produce far-reaching influences on the flow and wave patterns. 

A familiar feature of deep, rotating fluids, which has been studied by many 
investigators, is the presence of the far-field inertial waves. A number of these studies 
focus on the rapidly rotating, homogeneous case in which the Rossby number R, 
defined as R = u,/Q, L, is small and an internal Froude number is infinite. Here 
u, and L are characteristic velocity and horizontal length-scales of the flow and 9, is 
angular velocity of the undisturbed rotating fluid. The far-field features associated 
with the transverse uniform motion of an obstacle have been studied by Lighthill 
(1967, 1978), using the group-velocity concept. Motivated by the suggestion of a 
‘tilted Taylor column ’ (Hide, Ibbetson & Lighthill 1968), Cheng (1977) and Cheng & 
Johnson (1982) analysed the problem in an infinitely deep, rapidly rotating container 
as a boundary-value problem. 
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Redekopp (1975) studied the wave patterns generated by steady as well as 
oscillatory forcing disturbances travelling horizontally a t  a uniform speed in a 
rotating, linearly stratified fluid, employing the group-velocity approach. A tilting 
angle of the inertial-wave caustic is found, which is proportional to the Brunt-Vaisala 
frequency. It is also found that in an oscillatory case wave crests can appear 
upstream of the travelling disturbance. 

The hydrostatic-balance approximation has been extremely useful in geophysical 
contexts and is justified in a certain limited domain of a highly stratified rotating 
flow, to be brought out below. Studies of Hogg (1973) within this domain reveal the 
existence of a form of an extended Taylor column in the sense suggested earlier by 
Hide (1971) and Ingersoll (1969)’ as indicated by the closed streamlines above the 
topography. Rapidly rotating fluids under hydrostatic balance have also been studied 
with comparable models by Huppert (1975), Buzzi & Tibaldi (1977), Hogg (1980), 
Smith (1979a, b, c) and Pierrehumbert (1987). The equations governing the pressure 
disturbance in these works reduce to the Laplace equation, which does not admit 
inertial waves. 

From the viewpoint of a rational understanding of the geophysical fluid dynamic 
concepts for low Rossby number, a more explicit knowledge of the transition from 
the inertial-wave domain (corresponding to a vanishing stratification) to the 
hydrostatic-balance domain (corresponding to a strong stratification) is highly 
desirable. Apart from the need of a theoretical framework with which laboratory 
experiments a t  intermediate stratification levels can be compared, the interesting 
results based on the group-velocity concept (Redekopp 1975) for an arbitrary 
stratification requires further analysis in order to reconcile it with results of Hogg 
(1973) and ot>hers obtained for the hydrostatic-balance domain. Specifically, the 
group-velocity analysis would yield a far field in the strongly stratified case not in 
accord with Hogg’s solution, which features an extended Taylor column, suggesting 
that the far-field analysis by the group-velocity method may not be complete. 
Motivated by these needs Cheng, Hefazi & Brown (1984) extended Cheng’s (1977) 
formulation to a Boussinesq fluid, which provides a basis for the study of transition 
between the homogeneous and the highly stratified limits of the rotating fluids over 
shallow three-dimensional topographies. It turns out (Cheng et al. 1984) that the 
discrepancy results from a need for an elementary, but critical, modification to the 
group-velocity approach (and the related stationary-phase method) to account for 
the contribution of the long waves near the origin of the wavenumber spectrum, 
which is a singularity of the phase in this case. The treatment leads to an additional 
disturbance feature in the far field, completely distinct from the inertial waves 
which have a much shorter lengthscale. Characteristic of this new feature is a 
symmetrically distributed pressure hill (or a pressure depression if the topography 
has a negative displacement volume) far above the topography which coexists with 
the familiar lee waves. 

Following the nomenclature of meteorology, such a perturbation with a hill-like 
pressure rise will be referred to as an anticyclonic disturbance. Note that it produces 
anticyclonic circulation (clockwise in the northern hemisphere) in a reference frame 
fixed to the undisturbed, rapidly rotating fluid. Likewise, the disturbance with a 
pressure depression is cyclonic. Following Cheng et al. (1984), we shall use the 
descriptive ‘ cyclonic ’ for this type of disturbance whenever the distinction between 
the cyclonic and ctnticyclonic disturbances is unnecessary. At this point we may 
mention that the cyclonic disturbance coexisting with the inertial waves could have 
been apparent from the stationary two-dimensional ridge solutions by Queney (1948) 
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and also by Smith (1979a), which do not assume hydrostatic balance, nor a low 
Rossby number. However, the cyclonic nature of the circulation is not so evident 
therein, since the infinite ridge does not permit eddy motion in a horizontal plane (for 
any reference frame). Of great relevance to the topic areas are studies of ‘Lee 
Cyclogenesis ’ reviewed by Smith (1979~)  and by Pierrehumbert (1987) ; the 
analytical works examined therein are concerned mostly with steady-state, ridge- 
type solutions and do not address directly the evolution process of cyclones. (Instead 
of the production process or the origin of a cyclone, as the word ‘genesis’ would 
literally imply, the ‘ cyclogenesis ’ in Smith’s and Pierrehumbert’s reviews are defined 
as a fall in pressure greater than a certain magnitude.) Certain relations of the 
present work to those in Smith and Pierrehumbert will be noted in the text below. 

The major question unanswered in Cheng et al. (1984, referred to hereinafter as I) 
is whether this steady-state description is realizable a t  the end of an evolutionary 
process ( t  + co) irrespective of the initial state. Of interest also is the manner in which 
the inertial waves and cyclonic disturbance emerge during the evolution. To answer 
these questions, the unsteady problem of an impulsively started flow, to be referred 
to as the indicial problem, will be solved in this paper. In  a development parallel to 
the present study, Brown & Cheng (1987) studied the effect of a sinusoidally 
pulsating topography on a stratified rapidly rotating flow. Their analysis confirms 
the coexistence of the oscillatory cyclonic and lee-wave patterns a t  all pulsating 
frequencies and all degrees of stratification, except in the homogeneous case. 

It was not altogether clear if the cyclonic and lee-wave patterns can both become 
prominent at an early stage of an indicial or other non-periodic motion. The indicia1 
solution obtained below will show explicitly that, owing to the limited size of a 
wavenumber window, the radius of which is a linear function of time, the densely 
packed lee waves pertaining to the high wavenumbers emerge only long after the 
large-scale cyclonic component appears. 

The results may shed light on a possible route to the anticyclone generation above 
topography, and the emergence of cyclonic eddies in the lee, at least in the 
laboratory studies where inertial waves and cylonic disturbance can coexist. The 
phenomena may have relevance to transient eddy generation in the ocean, and has 
received considerable attention, even though there is a distinct difference with regard 
to the ratio of the depth to the horizontal scales. For example, Huppert & Bryan 
( 1975) examined the interaction between temporally varying currents developing 
above a bottom topography of the ocean by a numerical integration of a nonlinear, 
time-dependent model problem. Their results indicate that during the evolution, a 
region of high pressure with anticyclonic vorticity develops rather rapidly over an 
isolated seamount. In  the meantime, a region of low pressure with cyclonic vorticity 
is induced, which for sufficiently strong oncoming flows is convected downstream. An 
anticyclone above an isolated ground topography with accompanying cyclonic 
eddies in the lee has been reported in many observational and computational studies 
in the geophysical context (Richardson 1980 ; Chung, Hage & Reinelt 1976 ; Manabe 
& Terpstra 1974; Egger 1974; Buzzi & Tibaldi 1977; Smith 1979~) .  

Our analytic solution of the initial boundary-value problem will provide a 
description of the temporal evolution of the flow within a linearized framework and 
indicate that the aforementioned anticyclonic disturbance builds up rapidly from an 
early period and persist throughout subsequent stages of the evolution. This, along 
with the later appearance and intensification of inertial waves in the lee, may lead 
to an emerging pattern consisting of small-scale secondary eddies with directions of 
rotation opposite to that of the main one, depending on the degree of stratification 

1 FI.11 195 
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and the topography. These and other dynamic81 features will be brought out in the 
following development and by the examples analysed. A significant feature brought 
out by the analyses in I and Brown & Cheng (1987) deserving amplification is the 
explicit dependence of the cyclonic disturbance in the far field on the topographical 
(displacement) volume and the latter’s significant influence on the near field. 
Examples illustrating this feature will also be shown, which should be of interest to 
the design of laboratory experiments. 

In  $ 2 ,  the assumptions and framework are briefly stated, the basic scales and 
parameters are defined, and the relevant equations constituting the initial boundary- 
value problem for a shallow topography are derived. I n  $ 3  the indicia1 problem in 
which the uniform relative motion is impulsively started is formulated, and the 
solutions for two- and three-dimensional cases are obtained ; the frequency response 
and the response to other more general obstacle (relative) motions are delineated via 
the Duhamel integral. The evolutionary process of the cyclonic and lee-wave features 
in the impulsively started flow is studied in $4 where examples computed via an FFT 
algorithm are presented. Certain analytical details omitted here are more fully 
presented in Hefazi (1985). 

2. Model, assumptions, coordinates and governing equations 
The geometry of the problem to be considered is illustrated in figure 1 ( a ,  b )  and is 

similar to that of I, except for the allowance of a time dependence. The large 
container of depth H is filled with a stably stratified inviscid fluid which initially is 
in a state of rigid-body rotation about its axis with a constant angular velocity Qc. 
The system of coordinates (x*, y*, z*)  is fixed to the horizontal base of the container, 
thus rotating with the undisturbed fluid. The components of the perturbation 
velocities corresponding to the x*, y*, z* directions are denoted by u*, v*, w*. An 
alternative system of coordinates (x’*, y*,z*), where x’* = x*-uU,t*, is attached to 
the obstacle or bottom topography of typical length of 2L, moving slowly in the 
horizontal plane with a typical velocity u,. A Boussinesq fluid with a linear density 
variation of the undisturbed fluid is assumed. i.e. 

where p,* is the equilibrium density, p; is the density a t  the base z = 0, and E is a 
positive constant. The stratification parameter is 

which is simply the inverse square of a Froude number U J N L  (Yih 1965, 1980), 
noting that N = (ge /H) i  is the Brunt-Vaisala frequency. The quantity 0 = RH/L is 
the product of Rossby number and the aspect ratio of the container. In  the interest 
of analysing the region far from the moving obstacle, the present study considers an 
unbounded 0, corresponding to a very deep container which is also assumed to have 
horizontal dimensions much larger than the obstacle so that the effects of the 
sidewalls are ignored. 

Let T denote the non-dimensional thickness ratio of the topography and 
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FIGURE I .  (a) Illustration of coordinates and notation used in the analysis. ( b )  The container-fixed, 
body-fixed coordinates and the profile of the three-dimensional topography considered in $4.2. 

R = u,/L?, L be the Rossby number. Following I, we define a set of normalized 
variables, t ,  x, y, z ; u, v ,  w, p and p from 

where p" and p* are the pressure and density in their original scales, and the 
subscript e refers to the local equilibrium value. The bottom topography is given 

where j 2, j is of unit order. 

of motion. following I, can be simplified t o  a linearized, inertial-baroclinic system 

by Z = 7Zw(x- t ,  y, t ) ,  (2.3f) 

For a shallow topography in a rapidly rotating fluid (R < 1, 7 4 l ) ,  the equations 

aP ap 
ax aY 

-2v+- = 0, 2u+- = 0, (2.4a, 6) 
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with the impermeable boundary condition 

H .  T .  Hefuzi und H .  K.  Cheng 

a 
w = --Z,(x-t, y, t )  on i = 0. (2.5) at 

In the coordinate system (s’, y, i), fixed to the obstacle, where x‘ = x-t, (2.4) can be 
combined to yield a single equation in terms of normalized perturbation pressure $ 

where 

with the boundary condition (2.5) replaced by 

(2 .6a)  

(2.6b) 

Assuming quiescent uniform, initial and upstream states (u = v = w = p = 0), the 
advective operator outside the curly bracket in (2.6a, b )  can be omitted. The 
assumptions of vanishing disturbances as ( x ‘ ~  + y2 + i2 ) i  + co and the condition that 
in the steady state there are only outgoing waves in the far field (radiation condition) 
will also be invoked. 

While ( 2 . 6 q  6 )  are linearized for a shallow topography and a finite stratification 
(7 < 1,  0 = 0(1)), they also describe the more strongly stratified geostrophic flow in 
the domain 7& $. 0,  7 < 1 (cf. I) .  In  this case, the system is generally nonlinear, but 
the equation governing 3 is given by a limiting form of (2.6) in which terms 
associated with a/at and a/dx’ are relatively small and can be deleted. I n  this manner 
the strongly stratified rapidly rotating case of Hogg (1973) and others is recovered. 
The linear system (2.6) may therefore be used as a model to  study the transition from 
the homogeneous limit to the highly stratified domain of non-vanishing T&, as in $6.3 
of I. 

It is essential to point out that  the system (2 .4~-e )  is derived from a Boussinesq 
version of the inviscid model by deleting terms of order R relative to those retained 
in each of the (full) equations. Equation (2.4d) involving awlad and the time 
derivative of the horizontal vorticity is derived from the continuity equation 
combined with the two horizontal momentum equations, but requires a knowledge 
of the higher-order inertial contributions omitted from (2.4u, b ) t .  Therefore (2.4d) as 
such could not have been deduced directly from the relation between velocity and 
pressure of (2.4u, b) .  The simplification of the horizontal momentum equations for a 
small R, leading to (2.4u, b )  may be referred to as geostrophic or quasi- (nearly) 
geostrophic approximation following the convention used in many texts (e.g. 
Batchelor 1967, p. 572; Pedlosky 1979, p. 50). In some works on rotating stratified 
flows in a meteorological context, the hydrostatic-balance approximation (for the 
perturbation field) is implicit, and, in fact, is considered synonymous with the 
assumption of a geostrophic approximation (e.g. Pierrehumbert 1987). Following 
traditional usage, however, we consider the two approximations as being distinct ; 
thus, the aw/at term in ( 2 . 4 ~ )  is retained, which would have been absent in a 
hydrostatic-balance approximation but is crucial for the recovery of the inertial 

t The procedure was used in deriving the basic equations in Cheng (1977) for the homogeneous 
case. 
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waves. The hydrostatic-balance approximation can nevertheless be recovered in a 
certain limit corresponding to a sufficiently high 8 (cf. I ) .  

In  passing, we note that a parameter encountered often in the meteorological 
application is S = (L, /L)2,  where L, = ( - g d ( l n p ) / d z ) i  H / Q ,  is a Rossby defor- 
mation radius and H the height of fluid. S may be related to 0 and a reduced height - 
0 = RH/L as 

which may therefore be recognized as another reduced vertical-to-horizontal scale 
ratio. For the problem of infinite depth considered below, S is infinite, whereas in 
most ‘synoptic-scale ’ examples in meteorological studies S = O( 1 ) .  

3. The initial boundary-value problem 
In  this section, the initial boundary-value problem of (2.6) corresponding to an 

obstacle accelerated impulsively from rest to a uniform speed is formulated, i.e. we 
consider the flow response to an indicial obstacle motion 

where l ( t )  is the unit step function 
Z&’, y ,  t )  = Zw(x’, y) l ( t ) ,  

1,  t > 0 ,  
0, t G 0 .  

l ( t )  = 

The response of the flow system to other more general obstacle motions, including an 
oscillatory heaving motion, can be obtained from this indicial solution by a 
convolution via the Duhamel’s integral. One such case will be discussed in $3.4. 

The impermeable boundary condition (2.5) for the present case becomes 

which may be interpreted as that due to a sudden rise of a current. Imposing this 
boundary condition after t = Of would result in 

which in terms of the normalized perturbation pressure, via (2.4),  would give for 
t > o+ 

a i  = [ 2 axf  ( ~ - 4 ) + 8 ] Z , ( x / ,  at ax’ y )  l ( t ) .  

Equations (2.6a),  with the time derivative outside the bracket omitted, and (3.1) 
along with the assumptions of an undisturbed initial state, and vanishing 
disturbances in the far field for t + co, complete the formulation of this initial 
boundary-value problem. 

3.1. The three-dimensional solution 
Let F ( w ,  (T) be the double Fourier transform of the surface elevation z” = Zw(x’,  y ) ,  and 
let &z’, y ,  z,  s )  denote the Laplace transform of the solution +(x’, y ,  z ,  t )  with respect 
to t ,  i.e. 

1 
F(w,  cr) = - 

(27c)2 Jyrn Zw(x’, y) e-i(wz’fuf’) dx‘dy, 

+(x, y ,  z”, t )  e-st dt. 
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We point out that the assumption of an undisturbed initial state requires that u = 
v = w = p = 0 at t = O+,  which also implies through (2.4) a zero initial time derivative 
for the velocity, density, and the horizontal vorticity (a2/ax'2 + a2/i3y2) $. The Iatter 
condition is needed to obtain the Laplace transform of the solution to (2.6), since the 
equation is second order in t .  The function $ satisfying the boundary condition may 
then be written as (cf. Hefazi 1985) 

{h(w, g, s) e-b[(s-iai)2+&j. e i ( w z ' + w )  d w d a  ( 3 . 2 ~ )  sI1 c $(x', y, 2,s) = 

where b = i ( W * + C T 2 ) i  > 0 

and 

The solution now can be expressed as 

where 2-' is the inverse Laplace transform operator. In  passing we may mention 
that (3 .2u ,  b)  in the limit s+O yields 

from which we recover the steady-state solution of I after applying the radiation 
condition by properly defining (cf. I). 

(w2 - 0); = i sgn (w + 0) (w2 - @, (3 .5)  

where 
+ 1 ,  u > 0 ,  
- 1 ,  a < o .  sgn (a) = 

When s = iQ is purely imaginary, the radiation condition requires 

(3.6) 1 + I ( w - Q ) ~ - o ~ ;  ifo-Q > & 
- I ( w - ~ ) 2 - 0 1 ;  ifw-Q < -& 
iI(w-Q)2-OI; i f1w-D < & 

This limit corresponds to the solution of Brown & Cheng (1987) for the steady 
oscillatory motion of the obstacle, which will be recovered in a later section. 

The key to the explicit solution obtained in this section lies in the inversion of the 
Laplace transform in (3.3) which is given by 

Sd1( ) = [iw ei'Otf(t) + ( w 2 - 0 )  ei"pf(y) dp] n ( t - b ) .  ( 3 . 7 )  SI 
Here n(t-6) is a circular unit step function dcfined as 

1,  t > b ,  
0, t < b, b = z" (w2 + a2)i, n(t-6) = 

and f(t) = J ,  [0(t2 - b2)] i ,  where J ,  is the Bessel function of first kind and zeroth order 
and the definit,ion of b is unchanged. Essential to this derivation is the proper choice 
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FIGURE 2 .  Illustration of the circular wavenumber window. 

of the branch cut and the definition of the function [(s-iw)2++]i in the complex-s 
plane. This along with other details of the above derivation are described in the 
Appendix. A fuller presentation is given in Hefazi (1985). 

The solution (3.3),  (3.7) exists in the Riemann sense and can be shown to directly 
satisfy the governing equations and the required boundary condition and therefore 
is indeed the indicia1 response in question. A solution similar to (3.3),  (3.7) may be 
obtained for the vertical velocity component w, recalling that the equation governing 
w is identical to ( 2 . 6 ~ )  and the proper boundary condition is given by (2.5). 

The appearance of the circular step function 17 in (3.7) signifies that, a t  any given 
time, only the wavenumbers inside a circular window with the radius t / x  in the 
( w ,  a)-plane contribute to the solution. This is illustrated in figure 2. It can readily 
be inferred from this window that the large-scale cyclonic (or anticyclonic) 
disturbance, rather quickly asserts itself in the early stages of the evolutionary 
process, since the wavenumbers in the vicinity of w = u = 0 are the first to appear in 
the window. This feature will be substantiated by numerical calculations in a later 
section. 

3.2.  The two-dimensional solution 
The solution (3.3) for a two-dimensional ridge-type topography Z,(x’) reduces 
formally to 

F(w) (right-hand side of (3.7)) eiw5’dw 

with (3.7) unchanged, except that the circular step function 17(t - b )  is replaced with 
the one-dimensional step function i ( t / S -  I w I ). As in the steady-state solution 
considered in I, the formal integral (3.8) does not exist in the Riemann sense and 
should be defined over an indented contour. However, the horizontal velocity a$/ax‘, 
can be readily calculated from (3.8) and $ is recovered subsequently by quadrature 
as in I. It is also interesting to note that the spanwise component of an oblique 
(relative) wind has no effect on $(x’, t ) ,  for which u, must be taken to be the normal 
component of the far-field wind velocity. 

3.3. The steady-state limit 
As t + co, the function n(t - 6) approaches unity, thus the wavenumber window 
is completely open. For a compact topography, the function F ( w , r ) + O  as 
p = ( w 2 + u 2 ) f +  CO. Therefore, owing to the pressure of the factor F ( w ,  u ) / p  in (3.3),  
only finite wavenumbers (finite p )  contribute to the solution. For a finite b = p i ,  the 
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first part of (3.7), J ,  [0 ( t z -b2 ) ]k ,  vanishes for t+ CO. The second righbhand member 
of (3.7) may also be written as 

I = ( w Z - 0 )  ei"pJ,[B(p2-b2)]~dp. (3.9) r 
The integral (3.9) after a change of variable can be evaluated as 

(3.10) 

With (0-w'): given by (3.5), (3.10) recovers the steady-state solution of I. 
In  passing we note that the two-dimensional analysis of steady flow over 

mountains a t  low R by Pierrehumbert (1987) stipulates a hydrostatic balance, and 
for an infinite depth, this result can be recovered from I for the limit 8+ 00. 

3.4. From indicia1 response to frequency response 
As mentioned before, the response of the system (2.6) to other types of motions can 
be obtained from the indicial response. As an example, we can recover the solution 
obtained by Brown & Cheng (1987) for the steady oscillatory motion of the obstacle, 
i.e. 

Zw(x' ,  y, t )  = Zw(x' ,  y )  eint 

where Q is the frequency of oscillation. 

(3.3), (3.7), Duhamel's integral gives 
If $f denotes the frequency response of the system, and $ is the indicial solution 

t a  
$c.f = $(0) F ( t )  + 1 F(7)  2 [w( t  - 711 d7, 

0 

where for simplicity only dependence of the functions 
Furthermore, the initial condition $(XI, y ,  z", 0)  = 0 will give 

t a  
$f = J, F(7)  t [@(t - 7)1 d7. 

on time is indicated. 

(3.11) 

Substituting for $ from (3.3), (3.7) in (3.11), using Leibnitz's rule to evaluate the 
time derivative, and reversing the order of integration with respect to 7 and ( w ,  CT), 
(3.1 1 )  leads to a form which in the limit t +  00 is identifiable with the solution in 
Brown & Cheng (1987) where the far-field is analysed in detail and a number of novel 
far-field features are brought out. The present and Brown & Cheng's analysis are thus 
shown to be completely consistent and provide two complementary description of 
the unsteady flow patterns. 

4. Computation 
The solution (3.3), (3.7) and (3.8) can be viewed as the inversed Fourier transforms 

of functions of t and z" and thus be evaluated via one- and two-dimensional fast 
Fourier transform (FFT) algorithms for any time t and altitude z". Steady-state 
solutions have been studied in I and in Hefazi (1985) where examples with two- and 
three-dimensional cases considered therein, which illustrate most directly the effects 
of the cyclonic component on the horizontal flow pattern and the tendency towards 
developing closed streamlines. The unsteady analysis in the form of an indicial 
solution presented here will show how these cyclonic and other features emerge in 
time. 
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It should be pointed out again that a horizontal flow pattern with closed 
streamlines over a shallow topography is an anticipated feature in a rapidly rotating 
fluid with a stratification strong enough to maintain hydrostatic balance (Hogg, 
1973). Even though the problem is not strictly linear, the governing equation in this 
particular limit (OR2 + C O )  is recoverable from the linear system for $ (2.6a, b )  as 
0 +  00, subject to error comparable with R and 7, according to I. Therefore, the 
closed streamlines appearing in the case 0 = 5 in I may not be taken as evidence for 
a solution breakdown. The question on relevance and validity of the result involving 
closed streamlines will be more specifically discussed in $4.2. 

4.1. Application of the FFT algorithm 
The two-dimensional FFT algorithm that is used in computing the three-dimensional 
solutions typically employs 512 uniform w-divisions over the range of I w I < 16n, and 
128 uniform divisions over the range of I (T I < 411. with mesh spacing Aw = ACT = 211.1 
64, which results in AX = and A Y  = t ,  where X and Y are defined as x‘li and ylz” 
respectively. The choice of these parameters is based upon the need for a sufficiently 
fine mesh in ( w ,  CT) to resolve the singularity 1/(w2 + v2); in the solution (3.3), (3.7) and 
yet maintain large enough upper limits on o and (T with a fixed number of mesh 
points. The resulting mesh in X and Y is merely the location a t  which the solution 
is available and does not affect the truncation error. Discretization in w and (T 

however could introduce errors as high as (Aw + ACT) in the FFT solution owing to the 
singularity, but detailed comparisons of asymptotic and FFT solutions (for the 
steady case) presented in I and Cheng & Johnson (1982) confirm the quality of 
computations within the ranges of parameters discussed here. The discontinuity in 
the integrand of (3.3), (3.7) due to the circular unit step function n ( t - b )  is also 
noteworthy. The integrand is defined as the mid-value at  this discontinuity. 

4.2. The three-dimensional example 
The example presented here is for the smooth three-dimensional topography with 
Z:/L = 72, = ~ ( 1 +  X” + y2)-’ for which F ( w ,  (T) = zpK,(p), where p = (w2 + C T ~ ) ~  and 
K ,  is the Bessel function for the second kind of the first order. This is the same 
geometry considered in I. 

As indicated earlier, the primary objective of this study is to understand the 
evolutionary process of the high (low)-pressure region above the topography as a 
distinct anticyclone (cyclone) disturbance resulting from the influence of the 
stratification on rapidly rotating fluid. Two levels of stratification will be considered, 
0 = 1 and 0 = 5, which were the cases studied in I in great detail. Neither of these 
cases is close to  the hydrostatic-balance domain, but it serves to illustrate how 
inertial waves may modify a strong cyclonic-disturbance field at different stages 
leading to the steady state. The evolution history for the case 0 = 5 and thickness 
ratio r = 0.25 is of particular interest, since horizontal streamline patterns computed 
from the steady-state solution show not only (anticyclonic) closed streamlines but 
the appearance of a (cyclonic) secondary eddy. 

The bottom geometry is shown in figure l ( b )  and can be qualified as a thin 
topography. 

Figure 3 (G-e) describes the evolution of the streamline patterns a t  a mid-altitude 
z” = 0.5 above the thin topography with a thickness ratio r = 2 for 0 = 5 .  The 
streamlines are obtained as contours of constant stream function given by 

$‘total = -Y+7$. (4.1) 
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(e) r = 2 0 - ~  

- 10 -4 +4 + 10 
A 

FIQURE 3. Normalized perturbation pressure $ as a function of X = x ' / i  in the plane Y = y / i  = 0.5 
(top), and corresponding horizontal ( X ,  Y )  streamline patterns (bottom), a t  a reduced height 
z  ̂ = z / ( 2 L / R )  = 0.5 above the three-dimensional topography z;/L = ~ ( i  + ~ ' ' + y ~ ) - ~  located in the 
centre, with a non-dimensional thickness ratio T = 0.25 and stratification parameters 19 = 5, at 
different times. (a) t = 0.5, (b )  1, (c )  5 ,  (d )  10, ( e )  20 = 00. 

Each figure shows the distribution of the normalized perturbation pressure @ as a 
function of X = x'/$ in the plane Y = y/$ = 0.25, and the corresponding streamlines 
in the (X, Y)-plane. A region of high pressure (recall @ = - 2p)  implies an anticyclonic 
disturbance, causing a clockwise twist of the streamlines. 

During the early evolutionary stage of the solution, the anticyclonic motion builds 
up at  t = O(1) well before the familiar inertial-wave modes appear. This is to be 
expected in view of the wavenumber window established by the unit circular step 
function n(t-h) in the solution (3.3), (3.7), which begins with a zero width a t  time 
zero. Subsequently, various wave modes appear both upstream and downstream of 
the obstacle, but as time increases, consistent with the results for frequency response 
of Brown & Cheng (1987), most of the wavy modes disappear on the upstream side 
and move downstream. Finally, wavy features can be detected mainly on the 
downstream in the form of densely packed lee waves. In the meantime, the pressure 
hill associated with the large-scale anticyclonic motion first increases to a maximum 
then decreases to a local minimum before approaching the steady state. This, 
together with the growing inertial wave modes in the lee, gives the appearance 
(impression) of generation and shedding of a secondary (horizontal) eddy towards the 
final stages of the evolution. The solution eventually approaches steady state 
(equilibrium) in which a small-scale cyclonic eddy (opposite of the large-scale 
motion) appears in the lee of the obstacle. 

It is essential to point out here that the equilibrium solution (figure 3e) is not 
identical to the steady-state solution presented in figure 6 of I ;  a difference in the 
stagnation point location a t  the north is apparent from the streamline patterns. The 
discrepancy results from a scaling error in the calculation of the total stream function 
(cf. (4.1) in I). The essential features brought out therein, concerning the main 
anticyclone and the cyclonic eddy, however, remain unchanged in figure 3 ( e ) .  

The relatively early appearance of the cyclonic modes can be attributed to the 
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FIGURE 4. The same case as figure 3, but for 0 = 1, (a) t = 1 ,  ( b )  10, ( c )  20-CO. 
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higher group velocities enjoyed by the long waves. The dispersion relation of ( 2 . 6 ~ )  
for a wavetrain $ - ei(wx'+u~+kz-*t) yields 

( 4 . 2 ~ )  

- - (W2+# + 1 (4.2b) 

for vanishing o and CT. Thus, the group velocities of the smooth, anticyclonic modes 
corresponding to vanishingly small o and 0- can evolve much earlier; in fact, 
according to (4.2) they will appear far above the obstacle, and directly overhead. 
Also note that the anticyclonic disturbance shown in figure 3(u-e) appears to be 
rather far north of the mountain and remains displaced for a long time. This may be 
correlated with the pressure-level overshoot (cf. figure 3b) a t  t NN 1, which causes the 
stagnation point to move slightly northward, giving a greater degree of streamline- 
pattern asymmetry. 

The possibility of disturbances propagating upstream of the obstacle during the 
evolution of the flow could also have been anticipated from the study by Redekopp 
(1975), based on group-velocity considerations, as discussed in Brown & Cheng 
(1987). 

Associated with the anticyclone is a stagnation point at the far north ( Y  - 5-7) 
which may be inferred from the streamline contours as early as t = 1. This is not too 
surprising in view of the relatively large 8 considered in this example and similar 
features found in Hogg's solution in the steady limit (valid for large 8 even for a 
thickness ratio 7 = O(8-i)) .  Therefore the linear equations (2.6) for the pressure 
remain valid even in the regime 7& = O(1) (cf. I). 

The cyclonic eddy appearing in the lee a t  large t is interesting, but lacks the full 
support of an asymptotic theory, since its occurrence requires the coexistence of the 
anticyclonic eddy and inertial waves, for which the adequacy of the linear PDE 
(2.6a, 6 )  may be questioned. A close examination shows that the linearization leading 
to (2.6u, b) amounts to replacing the derivative D2/Dt2  by (a/at-u,a/az)2 in the full 
equation, which is at least justifiable for the early periods. In  any case, the example 
may be regarded as a transition model capable of reaching both the high and low 
stratification limits. The interesting features brought out by this transition model are 
certainly valuable in providing a focus for the more critical nonlinear analysis to  
follow. 

Figure 4 (u-C) presents the horizontal streamline pattern over the same topography 
and altitude but for a lower degree of stratification, 8 = 1. The velocity perturbations 
are considerably smaller in this case and there is no sign of closed streamlines. 

Finally, as a point of potential interest to  experimental detection of the high (low) 
pressure region and the related anticyclonic (cyclonic) motion, we examine the effects 
resulting from the difference in bottom geometry (for the same thickness ratio). Both 
studies for the steady and oscillating topographies (I and Brown & Cheng 1987, 
respectively) show that the anticyclonic (cyclonic) far field is determined mainly by 
the displacement volume of the topography. Although an asymptotic analysis has not 
been carried out for the present solution, similar dependence on the displacement 
volume is expected. In  fact, it should have been obvious from the relation with the 
sinusoidally pulsating solution via the Duhamel integral discussed in 5 3.4. 
Corresponding effects due to noticeable differences in displacement volume are also 
expected in the near field, although the relationship is not so explicit. Thus 

a52 
ak: 
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FIGURE 5 .  Kormalized perturbation pressure 2$ as a function of X in the plane Y = 0.5 a t  z  ̂ = 0.5 
for three different topographies : (i) spherical cap, (ii) truncated cylinder, and (iii) the smootjh 
topography of figures 3 and 4. These three examples may be considered t o  have the same thickness 
ratio, but there displacement volumes are widely different. 

consideration of the steady-state solutions will suffice for the purpose of showing the 
difference. 

Figure 5 shows a rescaled perturbation pressure &b as a function of X at  z" = 0.5 
in the plane of symmetry for three different bottom geometries : (i) a spherical cap, 
(ii) a truncated cylinder and (iii) the smooth topography considered in the analyses 
presented in figures 3 and 4, all of which have the same thickness ratio of r = 0.25. 
In  spite of the equal thickness, the displacement volumes of the three geometries (i), 
(ii) and (iii) are in the proportion 1:2:4,  respectively. Figure 5 confirms the 
anticipated significant differences among the three examples, while a good correlation 
of the three results through the far-field formulas is not possible since z" = 0.5 is not 
large enough. In  fact, the relative pressure level over the spherical cap is seen to be 
considerably lower than expected from the far-field analysis. 

5. Summary and concluding remarks 
Earlier work, I, showed that the steady-state relative motion of an obstacle at the 

horizontal base of a stably stratified deep rotating fluid supports not only lee waves 
a t  great (scaled) heights, but also a high (low)-pressure region associated with an 
anticyclonic (cyclonic) disturbance in the far field, which depends mainly on the 
obstacle displacement volume. Except in the homogeneous limit (19 = 0 ) ,  this feature 
exists a t  all degrees of stratification. In  the linearized framework, the present 
evolution analysis confirms that this steady-state feature is unique, and realizable at 
the end of an evolutionary process ( t - t  a). An explicit analytical solution for the 
indicia1 response, that is the case of impulsive acceleration of the obstacle to a 
uniform speed, is obtained and indicates that, a t  any given time, only the 
wavenumbers in a wavenumber window contribute to the solution, The radius of this 
wavenumber window is zero at  the beginning and increase linearly with time. 
Consistent with this description, a solution computed via an FFT algorithm for a 
three-dimensional tjopography reveals that  a relatively large-scale anticyclonic 
(cyclonic) disturbance generated by an obstacle associated with the lowest 
wavenumber w = r = 0 appears very early in the evolutionary process. As time 
increases, with the increase in the radius of the wavenumber window, other higher 
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wavenumbers can appear upstream as well as downstream of the topography. 
Eventually most of the upstream wave modes disappear or move downstream and 
the solution approaches its steady-state limit. The rapid build-up and persistence of 
the anticyclonic (cyclonic) disturbance along with the subsequent growth of the 
inertial waves in the lee results in what appears to be a generation process of a 
secondary horizontal eddy of the opposite sense a t  the final stage of the evolution. 

I n  the recent work of Brown & Cheng (1987) on pulsating topography, detailed far- 
field analyses indicate that flow-field features can differ widely depending on whether 
the forcing frequency D exceeds a frequency threshold given by the Brunt-Vaisala 
value N .  Our numerical solution shows that waves are present ahead of the 
topography mainly in an earlier period corresponding to the supercritical case 
(Q > N ) ,  and confirming therefore the feature associated with the threshold fre- 
quency. The response of the flow to these two different types (the indicia1 and sinus- 
oidal pulsating) of the obstacle motion presents two complementary descriptions 
of the time-dependent problem. 

Studies by Richardson (1980), Reitan (1974), and others have indicated the 
topographical origin of some of the large eddies observed near seamounts, as well as 
the generation of smaller-scale cyclones in the lee of major mountain ranges. The 
Tibetan highland, for example, is believed to have a far-reaching influence on the 
weather in Asia, particularly as a major cause for the zonal-wind deflection 
southward over the Indian and Pacific oceans, contributing to the high humidity 
over the east China coast in late spring and the monsoon in south-east Asia during 
the summer. Laboratory studies of Chen (1982) substantiate the belief that the 
topography and the Coriolis acceleration, rather than the /I-effect, are the major 
contributing factors, Chen’s conclusion appears to be in general accord with the 
cyclonic features brought out here and in I, although our assumption of a vanishing 
Rossby number will not allow a quantitative comparison. Detailed comparison of the 
field observations with related theoretical works have also proven problematical (see 
Smith 1979c) and Richardson 1980 for several examples). This may be partially due 
to the fact that conditions surrounding the phenomena in nature, such as the shape 
of the topography, stratification, etc., are more complex than the simplified model 
stipulated in theoretical works. 

I t  must be emphasized once again that the present theory cannot predict very 
accurately events in the atmosphere and ocean, because the parameter 
6 = ( N / Q c ) z / R 2  is taken as a unit-order quantity in the formal analysis. Since R is 
assumed to be small, N / Q c  has to be quite small for a unit-order 6;  this is not the 
case in atmosphere and may be valid only in special circumstances in the ocean. The 
objective of our analysis, however, has been aimed at  understanding the approach to 
equilibrium, and in providing a transition model capable of reaching both the high 
and the low stratification limits. Furthermore, this model suggests that the 
emergence of a small-scale eddy in the lee is feasible a t  least in an experimental set- 
up where the inertial waves and the anticyclonic eddy can be made to coexist. 

While analysis such as the present work bring out some of the fundamental 
features of these problems, more thorough theoretical and experimental work is 
needed to provide a better understanding of the actual flows in the oceans and 
atmosphere. More specifically, the effects of finite Rossby number in controlling the 
early evolution stage and the very important nonlinear analysis should be addressed. 

How the viscous contributions, including Ekman pumping, may alter the lee-wave 
patterns (and the secondary eddies) represent another area of importance. Obviously, 
the formation of the secondary cyclonic eddies must be critically examined in a 
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F I G ~ R E  6. Definition of (-s2+0$ in the complex --s plane. 

nonlinear analysis. There is still an unanswered question as to whether the 
phenomenon of blocking or the layer-independence principle familiar in the stratified- 
flow theory (Yih 1965; Pierrehumbert 1987) can be recovered in some proper limit 
from the linearized framework adopted here. 

Finally, changes brought about by various shapes of the three-dimensional 
topography are of interest, particularly to experimental investigations for the 
detection of features brought out in the foregoing analysis. Examples studied in 
figure 5 confirm the strong dependence of the anticyclonic feature on the 
displacement volume, rather than the thickness ratio, of the topography, which 
could be easily overlooked in a corresponding laboratory study. 
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Appendix 
We would like to show that for b 2 0 

iw(s - iw) - B 
2 - 1  exp { -b [ ( s -  iw)'+ 61;) = 

s [ (s -  ( w ) 2  + 8)p 

iw eifUt J ,  [6(t2 - b2)$ + (w' - 8 )  eiop J,, [8(p2 - b2)] t  dp 

where J ,  is the Bessel function of the first kind zeroth order, the function n ( t - b )  is 
defined as 

1, t > b,  
0, t < b ,  

n ( t - b )  = 

and 3 - l  signifies the inverse Laplace transform operator. We start with the 
following inversion formula. For b 0 

.-I{- , exp [ - b(s2 + B);] = .I, [B( t2  - b2)$ Z7(t - 6). 
(s2 + 6)s 

The proof of this inversion can be found in Parodi (1957). Essential t,o this proof is 
the proper choice of the branch cut and the definition of the function (s2 + 8); in the 
complex-s plane shown in figure 6. 
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The left-hand side of (A 1 )  now can be written as 

1 

[ (~ - i iw)~+6]~  
iw.9-1- , exp { --b[(s - iw)' + 61;) 

exp { -b[(s-  iw)' + 6]$ 1 
s [ ( s - ~ w ) ~ + ~ ] P  

+ (d - 6 )  9-l 

using the shifting theorem and the derivative rule (A 1 )  can now readily be 
shown. 
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